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Reconstructed rough growing interfaces: Ridge-line trapping of domain walls
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Department of Physics, University of Washington, P. O. Box 351560, Seattle, Washington 98195-1560

~Received 3 April 2001; published 30 August 2001!

We investigate whether surface reconstruction order exists in stationary growing states at all length scales or
only below a crossover lengthl rec. The latter behavior would be similar to surface roughness in growing
crystal surfaces; below the equilibrium roughening temperature they evolve in a layer-by-layer mode within a
crossover length scalel R , but are always rough at large length scales. We investigate this issue in the context
of Kardar-Parisi-Zhang~KPZ! type dynamics and a checkerboard type reconstruction, using the restricted
solid-on-solid model with negative monatomic step energies. This is a topology where surface reconstruction
order is compatible with surface roughness and where a so-called reconstructed rough phase exists in equilib-
rium. We find that during growth reconstruction order is absent in the thermodynamic limit, but exists below
a crossover lengthl rec. l R , and that this local order fluctuates critically. Domain walls become trapped at the
ridge lines of the rough surface, and thus the reconstruction order fluctuations are slaved to the KPZ dynamics.

DOI: 10.1103/PhysRevE.64.031606 PACS number~s!: 64.60.Cn, 02.50.Ey, 05.40.2a, 68.35.Rh
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I. INTRODUCTION

Equilibrium surface phase transitions have been a topi
research for several decades. Various types of critical be
ior are well established in both theoretical models and ac
experiments. This topic includes surface roughening@1,2#,
surface melting@3,4#, and surface reconstruction@5–7#.
Moreover, the competition between these phenomena le
to additional phases and phase transitions, like disordered
phases, preroughening transitions, and reconstructed r
phases @8–10#. Roughening induced deconstruction
Pt~110! @7,11# and preroughening induced deconstruction
Si~110! type geometries are other examples of this comp
tion @12#.

The theory of dynamic nonequilibrium processes like s
face growth has flourished during the last decade as w
Several additional types of dynamic universality class h
been identified. Kardar-Parisi-Zhang~KPZ! type growth is
one example@13–20#. Unfortunately, in this area the ga
seems wider between theoretical and experimental inter
Theoretically oriented research tends to focus on unive
aspects of these processes, such as the large scale prop
of growing surfaces in the stationary growing state and h
this state is approached in the asymptotic large time lim
Experimentally oriented research tends to focus on more
croscopic short distance aspects of growing surfaces, e.g
encountered in actual epitaxial growth.

One of the fundamental issues relevant to both persp
tives is whether any of the above equilibrium surface ph
transitions persist in the stationary state of growing int
faces. In this paper we address whether surface recons
tion order can exist during growth.

This issue is related to the absence of surface roughe
transitions in growing surfaces. Below the equilibriu
roughening transition temperatureTR the growing surface is
rough at large length scales, but remains flat and grows la
by layer at distances shorter than a crossover length scall R,
which varies with temperature and oversaturation. We rev
this briefly in Sec. II in the context of elementary nucleati
theory.
1063-651X/2001/64~3!/031606~8!/$20.00 64 0316
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Consider a surface that is flat and reconstructed in e
librium at low temperatures. BelowTR it appears to grow
within l R as flat in a layer-by-layer mode. Moreover, belo
Trec ~if Trec,TR) it appears as reconstructed if the new p
ticles can find their proper reconstruction positions at ti
scales that are short compared to the rate at which a
layer is completed. Presume that this is indeed the case.
next, more intriguing, question is whetherl rec can be larger
than l R; i.e., whether rough growing surfaces can be rec
structed? The compatibility of surface roughness with s
face reconstruction was addressed in the context of equ
rium phase transitions several years ago. The ans
depends on intricate details of the surface topology. For
ample, in missing row reconstructed~MRR! ~110! facets in
fcc crystals, like Au and Pt, roughness is incompatible w
reconstruction order, and the surface roughening transi
must simultaneously destroy the reconstruction@7#. In such
geometries, reconstruction order cannot exist in grow
surfaces beyond the roughness length scale either,
l rec< l R.

Surface roughness and reconstruction are compatible
each other in other crystal structures. Simple cubic~sc! MR
reconstructed~110! facets are an example. In equilibrium
they can roughen before the reconstruction order dec
structs,TR,Trec. The intermediate phase is known as a
constructed rough phase@7,10#. For those surfaces it migh
be possible to observe genuine deconstruction type ph
transitions in growing surfaces. Or, if not, the surface rec
struction can at least persist well beyond the roughn
crossover length scale,l rec. l R, and will be limited by an
independent mechanism. These issues are the topic of
research reported here.

In Sec. II we review rough versus layer-by-layer grow
in surfaces, and in Sec. III the basic properties of equilibri
reconstructed rough phases. Next, in Sec. IV, we star
focus on the reconstruction versus dynamic roughness is
and then, in section V, we choose a specific type of rec
struction and a specific type of surface growth dynamics
study it quantitatively by means of Monte Carlo~MC! simu-
lations. The model must be as simple as possible, avoid
©2001 The American Physical Society06-1
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secondary effects that might obscure the central issue.
choice is the so-called restricted solid-on-solid~RSOS!
model with negative step energies, which describes a sim
cubic checkerboard type reconstruction, and KPZ ty
growth. The MC simulation results are presented in Sec.
and analyzed in Sec. VII. Finally, in Sec. VIII we summari
our results.

II. ROUGHNESS IN GROWING SURFACES

The topic of this paper is whether surface reconstruct
order can exist during growth, but as a start it is useful
review briefly the related issue of dynamic surface roughn
from long and short length scale perspectives. Elemen
nucleation theory suffices for this purpose. Equilibrium cry
tal surfaces undergo well defined roughening transiti
from macroscopic flat to macroscopic rough. On the ot
hand, growing surfaces are theoretically ‘‘always roug
@21,22#. This seems at odds with practical reality, where s
faces appear to grow quite differently below and above
equilibrium roughening temperatureTR. Above TR they are
rough ~dynamic roughness! while below TR they seem flat
~layer-by-layer growth on flat surfaces as well as step-fl
growth on sloped ones@23,24#!. AboveTR the growth veloc-
ity vg is proportional to the oversaturationvg;Dm, while
below TR it is inversely proportional to a nucleation tim
scalevg;t21 with t21;exp@2ah2/(DmkBT)# @21#. h is the
equilibrium step free energy. As a result, crystal grow
shapes have sharp angles, in which many facets, includin
that are above theirTR, are missing. This apparent differenc
in growth mechanism is one of the most useful experime
tools to locate equilibrium roughening transitions in crys
facets.

The origin of the exponential factor int is the existence
of a nucleation barrier for creating a terrace of heighth→h
11 below TR. The edge~step! free energy loss term~pro-
portional toh times the circumference! competes with the
surface energy gain term~proportional toDm times the ter-
race area!. The nucleation barrier vanishes when the step f
energyh vanishes, i.e., atTR. After a new terrace larger tha
the nucleation threshold is nucleated with an exponenti
small probability, it spreads out fast by particle adhesion
its edge into a macroscopic domain, until it merges w
other spreading terraces that have nucleated in the m
time, and thus completes the new surface layer. Howe
new terraces are nucleated on top of spreading terrace
well. This nesting effect, together with the spatial fluctu
tions of nucleation events, leads to the loss of a well defi
~length scale free! global reference surface level. This mea
that, although at small enough length scales the surface lo
flat and seems to grow layer by layer, at large length scale
is rough.

There is no phase transition between the layer-by-la
and rough growth regimes, only a characteristic crosso
length scale. The latter is of orderl R5vst, with vs the step
velocity ~determined by the particle deposition rate at t
step edge! andt the above time scale at which terrace nuc
are being created. Surface flatness cannot be maintained
ing growth over large length scales, but at small oversatu
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tions (Dm) and sufficiently belowTR ~large step free ener
gies h) the growing surface can appear to be flat for
practical purposes, over any typical experimental len
scale.

The same types of issue arise in our study concerning
compatibility of surface reconstruction order with growth d
namics. First we address whether surface reconstruction
der can persist during growth at macroscopic length sc
~the thermodynamic limit!; and, if not, whether it might still
exist in a practical sense within a characteristic length sc
l rec below the equilibrium reconstruction temperatureTrec.

III. RECONSTRUCTED ROUGH EQUILIBRIUM PHASES

Surface reconstruction is conventionally associated w
flat interfaces. However, surface roughness does not ne
sarily destroy the reconstruction order. A rough but still r
constructed surface is in a so-called reconstructed ro
~RR! phase. The equilibrium versions of RR phases w
studied theoretically some years ago in the context of
competition between surface roughening and reconstruc
in MR reconstructed fcc~110! facets@6,7#. The topological
details of those fcc surface prevent the existence of
phases, implying that in Pt~110! the surface roughens an
deconstructs simultaneously@7# as observed experimentall
in Pt~110! @11#. This implies immediately that during growt
reconstruction order is limited to the roughness crosso
length scale,l rec< l R. The same theoretical studies also ide
tified other surface geometries where RR phases do e
For thosel rec is not limited byl R. In this section we review
the basic properties of RR phases, using as examples ch
erboard and MR type reconstructed simple cubic stackin

To avoid confusion, it is useful to distinguish betwee
misplacement and displacement type reconstruction@10#. In
misplacement reconstructions, particles have moved to
ferent solid-on-solid type stacking positions, or are remov
altogether, compared to the unreconstructed flat surf
structure. The checkerboard reconstruction in Fig. 1 and
the more realistic MR type reconstructions are examples
this. The average surface height has changed by half a
h→h2 1

2 . In displacement reconstructions the atomic sta
ing does not change. Instead, the atoms are merely elasti
distorted at the surface with a commensurate or incomm
surate period compared to the bulk. Misplacement type

FIG. 1. checkerboard type misplacement surface reconstructi
6-2
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RECONSTRUCTED ROUGH GROWING INTERFACES: . . . PHYSICAL REVIEW E64 031606
constructions are more likely to disorder at temperatures n
TR than displacement type reconstructions. For clarity
focus here on misplacement reconstructions.

The definition of the reconstruction order parameter is
the core of RR phases@7,10#. In checkerboard and MR re
constructed sc~110! facets, the reconstruction order can
formulated in two distinct ways. One formulation keeps tra
of whether the black or white field~even or odd row! is on
top. The other measures it in terms of antiferromagnetic
der in the parity type Ising variablesSr5exp(iphr), with hr
50,61,62, . . . the surface height at siter ~see Fig. 2!.
These two formulations might seem equivalent in flat s
faces, but they are not in the presence of roughness.

The compatibility of surface reconstruction with surfa
roughness depends on topological properties of step and
main wall excitations; on how they affect the two versions
the order parameter. Figure 2 shows in cartoon style a c
section of the reconstructed surface, and also domain
and step excitations. The domain wall in~b! does not change
the surface height. Notice that both order parameters cha
sign. Across the step in~c!, from left to right, the even-odd
order parameter changes sign, but the parity order is u
fected. At the step in~d! the opposite happens. These tw
types of step are the only topologically distinct ones that
possible;~c! couples only to the even-odd row type ord
parameter and~d! only to to the parity version.

It is possible to construct many more step and dom
wall structures that look locally different from the ones in t
figure, but those induce the same change in height an
reconstruction order~s! and therefore are from a topologic
point of view identical to the ones in the figure. Notice al
that the excitations in~b!–~d! are related to each other in th
sense that any of the three can be interpreted as a bound
of the two others. Elastic surface deformations in the ac
atomic positions near the surface and additional ones
the steps and domain walls influence the local internal st
ture of steps and domain walls, but do not affect these to
logical features, and therefore need not be explicitly rep
sented in the following discussion.~They certainly
renormalize the step and domain wall energies and the in
actions between such surface excitations.!

FIG. 2. ~a! A perfect reconstructed surface.~b! A domain wall;
both order parameters change sign.~c! A step where only the even
odd row order changes sign.~d! A step where only the parity orde
changes sign.
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The fate of reconstruction versus roughness depends
the energies of these steps and domain walls, including
kink energies. They set the scale of the meander type ent
and therefore the temperature dependence of the step
energies. If the domain wall free energy vanishes first,
surface remains flat but the reconstruction vanishes,Trec
,TR. In case the free energy of one of the two types of s
vanishes first, the surface enters a reconstructed rough p
TR,Trec. At the roughening transition one of the two reco
struction order parameters vanishes, but the other type
order remains. So there exist two topologically distinct typ
of RR phase.~Notice that only the one with the parity typ
order is readily observable by, e.g., conventional x-ray d
fraction.!

In the RSOS model below, the RR phase has parity or
i.e., the step free energy of the~c! type steps is zero, bu
walls and~d! type steps still have nonzero free energy. W
will refer to those excitations as ‘‘loops of zeros,’’ because
the rough surface they show up as contours across which
height change is zero,dh50. The deconstruction transitio
~inside the rough phase! takes place at the temperature whe
the surface tension of the loops vanishes. In equilibrium t
turns out to be an ordinary Ising transition. This conclud
our brief review. For more details we refer to Refs.@7# and
@10#.

IV. RECONSTRUCTED ROUGH GROWTH

Let us focus now on surface growth. Only in surfac
where equilibrium RR phases are topologically possible
the surface reconstruction length scalel rec exceed the onse
of dynamic roughness of length scalel R. Moreover, it is
quite possible that the reconstruction order persists ove
length scales (l rec→`), such that a genuine dynamic deco
struction phase transition takes place in the stationary sta
the growing surface, just as in equilibrium.

For comparison, imagine a two-dimensional~2D! lattice
with a height variable and an Ising spin degree of freed
~representing the reconstruction order! on each site. This
leads to two coupled master equations, one for surf
growth, e.g., KPZ type dynamics, and the other for the
construction order, e.g., Glauber type Ising dynamics.
equilibrium surfaces, the coupling between the two sector
weak, to the extent that the reconstruction transition in
Ising sector and the roughening transition in the height v
able sector do not interfere with each other@7,25#. The cen-
tral issue is whether and how this coupling changes dur
growth. The Ising dynamics itself is blind to the growth bia
If the coupling between the two sectors remains weak,
Ising spins can still reach the Gibbs equilibrium state a
undergo a conventional equilibrium reconstruction transiti

Coupled master equations of this type have been stu
recently in the context of specific 1D growth models. Tho
display strong coupling between the Ising and roughness
grees of freedom, such as growth being pinned down
Ising domain walls@26–28#. Pinning favors spontaneou
faceting. In our 2D model, we observe different effects,
addition to the obvious fact that in 1D equilibrium reco
struction order cannot exist.
6-3
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V. RESTRICTED SOLID-ON-SOLID MODEL

The 2D restricted solid-on-solid model is one of the wo
horses of surface physics research. Integer valued he
variableshr50,61,62, . . . areassigned to a square lattic
and nearest neighbor heights are restricted to differ by
most one unit,dh50,61. The energy

E5
1

2
K (

^r ,r 8&
~hr2hr 8!

2 ~1!

depends only on nearest neighbor interactions. We use
mensionless units,K5J/kBT. The K.0 side of the phase
diagram contains a conventional equilibrium surface rou
ening transition@25#. Moreover, the nonequilibrium versio
has been studied extensively forK.0 as well, because it is a
natural lattice realization of KPZ growth@13–19#.

For K,0, the model contains one of the simplest e
amples of an equilibrium RR phase@25#, and is probably the
most compact formulation of the coupling between Ising a
surface degrees of freedom. Thedh561 steps are more
favorable than flatdh50 segments. At zero temperature,K
→2`, the dh50 states are frozen out, and the model
duces to the so-called body centered solid-on-solid~BCSOS!
model, but in this version it lacks step energies, which me
that the surface is rough even at zero temperature. The
face is rough, but since nearest neighbor heights must d
by 1, all heights on one sublattice are even, and odd on
other, or the other way around. This two-fold degenera
represents the checkerboard type RR order. The stagg
magnetization, defined in terms of the parity spin type va
ablesSi5exp(iphr), is nonzero.

The dh50 excitations that appear atT.0 form closed
loops and behave like Ising type domain walls. The rec
struction order changes sign across such loops. Their s
diverge at the equilibrium deconstruction transitionKc5
20.9630@25# ~determined by transfer matrix finite size sca
ing techniques!. The Ising and roughness variables coup
only weakly. Numerically, all reconstruction aspects of t
transition follow conventional Ising critical exponent
Moreover, the thermodynamic singularities in the Ising s
tor affect only the temperature dependence of the sur
roughness parameterKG, defined in terms of the height
height correlator,

^~hr 1r 0
2hr 0

!2&.~pKG!21 ln~r !. ~2!

The continuum limit analysis confirms these numerical
sults. The point in the generalized phase diagram where
Gaussian~height! and Ising degrees of freedom decouple i
stable renormalization type fixed point@10#.

We study this same RSOS model in the presence of a K
type growth bias. In the MC simulation, we first select
update column and next whether a particle deposition
evaporation event will be attempted. The move is rejecte
it would result in a violation of the RSOS conditiondh50,
61. If allowed, it will take place with probabilityP
5min(p,pe2DEj) in case of deposition, and with probabilit
P5min(q,qe2DEj) for evaporation. Without loss of generalit
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we can choosep1q51. At infinite temperature (K50) and
deposition only (q50) the model reduces to the well know
Kim-Kosterlitz @18# model for KPZ type growth.

We will present only our MC results far from equilibrium
i.e., atq50 with deposition only. We observe no qualitativ
differences closer to equilibrium, 0,p,1, but the interpre-
tation of the data becomes increasingly obscured~as ex-
pected! by ~conventional! crossover scaling from the equilib
rium deconstruction phase transition.

At low temperatures,K→2`, the Metropolis dynamics
slows down considerably. The rejection rate becomes h
and the density of active sites becomes low. Therefore
employ the following rejection free algorithm. During th
MC simulation we keep a list of active sites, i.e., sites wh
particles can deposit without violating the RSOS conditio
They are grouped inj 51, . . . ,5sets, according to the five
distinct energy changesDEj that can occur during depos
tion. First we preselect one of those five sets, with proba
ity ( pjNj )/(( j pjNj ), wherepj5min(1,e2DEj) andNj is the
number of sites of typej. Next, a particle is randomly depos
ited at one of the sites in that specific setj. Rejection free
procedures like this upset the flow of time. To restore pro
time, we increase the MC time during each update step
1/p31/Nj . We checked explicitly that this reproduces th
correct value for the KPZ dynamic exponentz58/5 @18–20#
at K.0; we findz.1.660.1.

The above algorithm resolves the slowing down probl
in the actual MC simulation, but does not address its orig
In the limit K→2` the RSOS model reduces to the BCSO
model, withdh561 at all bonds. Thedh50 loops are fro-
zen out completely. In BCSOS type KPZ growth dynami
two particles are deposited at once in the form of vertica
oriented bricks, otherwise a ‘‘forbidden’’ configuration wit
dh50 would arise. In theK,0 RSOS model at very low
temperatures the same event is achieved as a two-step
particle process, by the deposition of a second particle at
same site soon after the first one. The probability for de
sition of the first particle is equal top5L22exp(2K). The
second particle deposition on top of it happens with proba
ity p5L22. This implies that the time clock in the RSO
model runs more slowly by a factorr 5exp(2K)@1
14exp(K)1•••#.

A final remark about surface roughness. In normal s
faces, the equilibrium roughness increases with tempera
due to the fact that meander type entropy renormalizes
step energy into a reduced step free energy@10#. In our
model, surface roughness evolves in the opposite way
decreases with increasing temperature. The surface is
rough at infinite temperatureK50 than in the zero tempera
ture limit K→2`. A high temperature RSOS surface, wi
dh50,61 is obviously less rough than a BCSOS surfa
with only dh561. Recall that this BCSOS model lacks ste
energies, such that it is just as rough atT50 as atT→`.
From the BCSOS perspective the thermally exciteddh50
loops stiffen the surface, and give rise to an inverted rou
ness versus temperature profile. On the one hand, this i
interesting phenomenon in its own right. Moreover, we co
fine tune it by introducing next-nearest neighbor interactio
since they represent BCSOS type step energies. On the o
6-4
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RECONSTRUCTED ROUGH GROWING INTERFACES: . . . PHYSICAL REVIEW E64 031606
hand, this effect is unlikely to affect the central question
want to address~how do roughness and reconstruction d
grees couple during growth! and therefore we choose not
do so in this study.

VI. RECONSTRUCTION DURING GROWTH

We search for reconstruction order as a function of te
perature, for2`,K,0. The susceptibility type paramete
@29#

x5L2~^m2&2^umu&2! ~3!

of the reconstruction order parameter

m5^~21!x1yeiph(x,y)& ~4!

is shown in Fig. 3 for the stationary state of the growi
surface, as a function ofK for different system sizesL2. The
sharp maxima seem to confirm the existence of a dyna
surface reconstruction transition into a RR phase. Howe
several features are very different from equilibrium. T
peak height diverges asx;L2; i.e., more strongly than at th
equilibrium transition point where it scales asx;Lg/n. This
could be a signal of a first order phase transition. Howe
the peak position does not converge to a specific crit
point Kc . Instead it keeps shifting with lattice size. It scal
logarithmically, as Kpeak(L).2A ln(L/L0) with A50.77
60.05 andL052.260.2.

Next, we monitor in detail the reconstruction order p
rameterm near and below the equilibriumKc as a function of
time. It behaves similarly as in conventional spontaneou
ordered phases, but flipflops more frequently than is jus
able from finite size effects alone. Moreover, the fluctuatio
in m within each phase are too strong. Figure 4 quanti
this in terms of a histogram of the number of times a spec
value ofm appears in a typical time series. The distributi
has two distinct peaks, suggesting the presence of spon
ously broken reconstruction order, but the tails have a po

FIG. 3. Reconstruction order susceptibilityx as function of tem-
perature at system sizesL58 –64. The data collapse onto
single curve by the shiftK85K2Kpeak(L), with Kpeak(L)
520.77 ln(L/2.2).
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law shape instead of the exponential form mandatory fo
spontaneously broken symmetry.

Power laws are the hallmark of critical fluctuations. S
quite surprisingly, it appears as if the RR order is critical
low temperatures for allK,Kpeak. Instead of an isolated
critical point, we seem to be dealing with a critical phase

VII. LOOPS TRAPPED ON RIDGE LINES

The surprising critical fluctuations in the reconstructi
order parameter can be traced to the following loop dyna
ics. Consider a typical configuration at very low tempe
tures. Figure 5 shows an example@30#. The surface is in an
almost pure BCSOS type dynamic rough stationary s
~with dh51!, and contains only a fewdh50 loops separat-
ing surface areas of opposite checkerboard type RR ord

The typical life cycle of such a loop runs as follows. It
nucleated in a valley bottom. Next it runs up hill, growing
diameter and encompassing the entire valley, until it
comes trapped on a ridge line. There it lingers until anot

FIG. 4. Histogram~inset! of the reconstruction order paramet
m at L532 andK523.2 from 218 data points usingDM50.01 as
bin width. The tails about the peaks atm561 scale as power laws
~main frame! with exponent20.960.1.

FIG. 5. A typical low temperature configuration of the growin
surface with one large loop trapped at a ridge line.
6-5
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loop annihilates it, or until the KPZ surface fluctuations
which it is slaved shrink it back to zero.

Figure 6~a! represents a cross-section of the 2D rou
surface near a valley. It shows a domain of opposite rec
struction inside an otherwise perfectly reconstructed ro
configuration. The two flat segments are the locations wh
the domain wall loop intersects the cross section. In equi
rium, the loop fluctuates with equal probability up and dow
the slope because depositions and evaporations are eq
likely. A growth bias breaks this symmetry, the loops mo
likely move upward than downward,@see Fig. 6~a!#. This
upward drift is the driving force responsible for the trappi
of loops at ridge lines, and thus creates a strong coup
between the roughness and reconstruction degrees of
dom, unlike equilibrium where they effectively decouple.

A few comments on the topology of ridge lines in roug
surfaces might be useful. Imagine a rolling ball in this lan
scape, as in the well known analogy with renormalizat
flow in statistical physics. Presume strong friction such t
the velocity is proportional to the force, i.e., the gradient
the slope, at all times. The hilltops are the completely
stable ‘‘fixed points.’’ The valleys are the attractors. T
ridge lines form the watersheds between valleys. Every ri
line runs from a hilltop to a saddle point. From each hillt
an arbitrary number of ridge lines can emerge, but only t
ridge lines can end at each saddle point~at opposite sides o
the single direction in which the saddle point attracts!. So the
ridge lines form a network, and since none of them can s
in midair it is a closed network. The KPZ rough surface
scale invariant, which means that this ridge-line network
fractal properties.

Ignore, for the time being, the scale invariant aspects
the network. Imagine a landscape consisting of deep sm
valleys surrounded by ridge lines, unlike the real rough s
face where every deep valley consists of collections of s
valleys. The life cycle of a macroscopic loop in this surfa
starts with the nucleation of a new seedling loop at the fl
of the valley and its rise along the slopes, during which
grows into a macroscopic object. The only loops of inter
are those nucleated at the valley bottom and then runn
uphill encompassing the entire valley. Only those loops
topologically trapped and stable. Loops nucleated on
slopes annihilate by stochastic fluctuations before becom
macroscopically large. The same is true for loops nuclea

FIG. 6. ~a! One-dimensional cross section of the surface nea
valley with two loop segments. On the slope, a~d! are the only
active adsorption~desorption! sites. The domain walls always mov
upward during adsorption.~b! A loop of size ofl c nucleated at the
bottom of a local valley. Gray and white sites have different surf
reconstruction parity order.
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out of the valley bottom but running uphill on one slop
segment only.

The rise of a seedling loop out of the valley bottom into
macroscopic object is a very fast process. Almost no M
moves that make the loop grow and rise are rejected; en
barriers are rare, because the length of the loop~its energy!
increases uniformly. Compared to this, the nucleation f
quency in the valley bottom is very small. This means th
the time scale at which a macroscopic loop emerges ou
the valley is limited by the nucleation time scaletn and
independent of the valley size.

To measuretn we prepared a surface in the BCSOS KP
stationary state and measure~at a very low temperature,K
!Kc) the intervals between macroscopic loop events. N
merically we findtn;exp(2aK) ~measured in BCSOS time
units! with a53.060.1.

This agrees qualitatively with the following estimate. Th
deposition of the first particle in the valley bottom occu
with probability p5L22e2K. This creates a fledgling loop
but one that is indistinguishable from the intermediate st
in an elementary BCSOS type growth event~where a second
particle is dropped on top of it with probabilityp5L22).
The loop grows when the next particle is dropped not on
but next to the previous one. That happens with probabi
p5L22eK. The nucleation threshold diameterl c is reached
when the loop growth and BCSOS growth become dis
guishable, i.e., when the annihilation of a loop requires
creation of a new easily distinguishable loop inside it. Th
happens at aboutl c

2.7 @see Fig. 6~b!#. The time scale at
which that stage is reached is approximatelyt.L22e24K ~in
BCSOS time units!, which is of the same order of magnitud
as the above numerical nucleation time scale.

The loop rises out of the valley until it becomes trapp
on the ridge line that separates this valley from adjac
ones. From there on the loop is slaved to the growth fluct
tions of the surface. Valleys grow and shrink~without bias!,
open up, fill up, and merge. The loop has to follow this dan
of the ridge line until a new loop nucleates out of the vall
and annihilates it, or until the encircled terrain happens
shrink to zero~fills up! by surface growth fluctuations.

We expect that the lifetimetz(L) of a ridge line of sizeL
in a growing surface scales as a power lawtz;Lz, with z the
dynamic exponent of the surface roughness degrees of
dom ~KPZ like in our model!. To test this, we measure th
decay times of large macroscopic defect loops~of about half
the lattice size! as a function ofL, at low temperaturesK
!Kc . The data in Fig. 7 indeed collapse onto one univer
curve after a rescaling of time bytz'Lz. The collapse fits
best atz51.760.1 ~in BCSOS time units!, which is consis-
tent with the known KPZ dynamical exponentz58/5
@18–20#.

The ridge-line fluctuations are responsible for the pow
law tails in the time distribution of RR order, Fig. 4. Thos
critical fluctuations show up only below a characteris
length scale l rec, where the nucleation time scaletn
;exp(2aK) is larger than the surface growth time scaletz
;Lz. A simple estimate forl rec follows from equating the
two time scales,l rec;exp(aK/z).

The peaks in the susceptibility in Fig. 3 reflect this cros
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over lengthl rec. Recall that the peak shifts logarithmicall
By settingtn5tz we obtain the same logarithmic behavio
Kc52(z/a)ln(L/L0). The prefactor is too small by abou
30%, but this is not a surprise because the estimate is ra
simple minded. It ignores, for example, the self-similarity
the rough surface. Consider a subvalley adjacent to an
ready trapped loop. Suppose a new loop nucleates out of
subvalley. The loop segments annihilate each other in p
The net effect of this nucleation event is therefore that
trapped loop jumps across the sub valley. It now follows
complementary segment of the ridge line that encircles
subvalley. Such events renormalizetz , in particular nearKc .

VIII. CONCLUSIONS

In this paper we study the compatibility of surface reco
struction and surface roughness during growth. There
several possibilities.

In surfaces where reconstructed rough phases are t
logically forbidden, like missing row reconstructed fcc~110!
facets, reconstruction order cannot exist on a global sca
the stationary growing state. It can appear only locally with
the crossover roughness length scalel R within which the
surface grows in a layer-by-layer fashion, i.e.,l rec< l R. The
reconstruction length scalel rec can exceedl R only in surfaces
where equilibrium reconstructed rough phases are topol
cally possible, and those surfaces could in principle e
display genuine deconstruction type phase transitions in
stationary growing state.

FIG. 7. Histogram of the decay time of a trapped loop
K526.0. The data collapse by rescaling time by a factorL1.7.
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We address this issue in the context of KPZ type dyna
ics, in the RSOS model with negative coupling constantK
,0, which in equilibrium has a checkerboard type RR pha
and a true deconstruction phase transition inside the ro
phase. We find that the stationary growing rough state la
true macroscopic RR order;l rec remains finite. Moreover, we
identify the mechanism that sets the temperature depend
of l rec.

The fundamental features are an upward drift of the
construction domain wall loops and their trapping at t
ridge lines of the surface. There, the loops are slaved
fluctuations of the surface growth dynamics.l rec is set by the
competition between two time scales: the nucleation ti
scale of a new loop out of the valleys~annihilating existing
trapped loops! and the time scaletKPZ;Lz at which a ridge
line of radiusL vanishes due to surface growth fluctuation

At length scales smaller thanl rec;exp(aK/z), the surface
appears as reconstructed rough, and the lifetime of the lo
is determined by the KPZ growth dynamical fluctuation
The latter follow power laws. This manifests itself in critic
fluctuations in the reconstruction order at length sca
smaller thanl rec. In x-ray diffraction from such a growing
interface, one would observe not only power law shap
peaks associated with the surface roughness, but also, at
peratures wherel rec is larger than the coherence length of t
surface, power law shaped reconstruction diffraction pea

At length scales larger thanl rec, the surface appears a
unreconstructed rough. Loops of that size are destroyed
nucleation of new loops instead of KPZ surface fluctuatio
and they are not trapped anymore, because loop segm
can hop across subvalleys of sizel . l rec by means of nucle-
ation of new loops in subvalleys.

In our study we chose to focus on KPZ type surfa
growth dynamics, but we have good reasons to expect
the trapping of domain walls on ridge lines is a comm
phenomenon. In general, the quasicritical fluctuations w
reflect the dynamic exponent of whatever growth dynam
is applicable. In recent studies of 1D models with KPZ a
Ising type coupled degrees of freedom, the Ising defects
came trapped in valleys and canyons and thus pinned d
the growth@26,27#. We expect that a tendency toward fac
ting instead of ridge-line trapping can also be realized in
2D model by varying the local growth rates.
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